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Abstract. Three-dimensional simulations of fires cannot be performed on present-day
computers without devising simplifications to the governing equations. One such method is
the large-eddy simulation (LES) approach for fires developed at NIST. This method results
in computationally efficient fire simulations in which the buoyancy-generated motion of hot
gases and smoke is driven by Lagrangian particles that carry the heat released by combustion.
Complex geometries are represented by blocking cells interior to a rectangular domain. A P1
approximation to the radiation transport equation was developed to be consistent with the exact
transport equation for scenarios based upon this model. An isolated fire plume above a semi-
infinite solid with a constant absorption coefficient in each half-space was studied as an example.
A direct elliptic solver required only a fraction of the total LES computational cost. Radiative
fluxes and intensities from the numerical and exact solutions to the P1 approximation were in
excellent agreement.

1. Introduction

Thermal radiation and buoyant convection are the dominant modes of heat transfer in large
fires. Even in small pool fires (diameter of 0.1-0.3 m) radiative feedback to the fuel surface
is significant [1]. The purpose of this paper is to describe a model of radiative transport in
gases that is suitable for use with a large-eddy simulation (LES) approach for fire dynamics
developed at NIST (National Institute of Standards and Technology) [2, 3]. This LES
model of convective transport and combustion heat release was developed by distinguishing
between physical processes that can be computed explicitly and those that operate at length
and time scales too small to be resolved (i.e. subgrid). A consequence of this approach is
that most computational resources can be devoted to the large-scale transport of hot gases
and smoke induced by the buoyantly induced flow. This is highly desirable in fire safety
simulations of the kind for which the LES approach is designed (e.g. warehouse or building
fires). The same strategy will be attempted here for the thermal radiation generated by the
fire.

For the present purposes it is sufficient to understand that the fluid mechanics is
calculated on an Eulerian finite-difference grid in rectangular coordinates. The velocity
and temperature fields calculated in this way are assumed to be large-scale phenomena
resolvable on the grid. Complex geometries are incorporated by blocking computational
cells corresponding to internal boundaries in a rectangular computational domain. The
combustion phenomena that buoyantly drive the flow are assumed to be subgrid scale,
whose consequences can be represented by Lagrangian ‘thermal elements’. These elements
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release sensible energy into the gas as they are convected with the large scale fluid motion.
A description and justification of this procedure can be found in [3, 4].

In the analysis of radiative transport, it will be assumed that part of the energy released
as a result of the combustion processes is emitted as thermal radiation. This implies that the
emission processes are aiso subgrid scale, and cannot be caicuiated on a macroscopic grid
equivalent to that used for the fluid mechanics. The absorption and transport of radiation,
however, are both assumed to take place on scales set by the large scale fluid motion and
the enclosure or scenario geometry, if any. Thus, these phenomena are resolved explicitly
in the model and computations described below. This implies that the radiation fields are
far from equilibrium in the fire scenarios of interest here. In effect, the radiation is treated in
a manner analogous to the combustion phenomena that generate it. The crucial point in the
analysis is that the energy release, not the temperatures in the subgrid scale phenomena, must
be captured. The subgrid combustion physics also controls the soot generation. This can
be accounted for by defining the local soot mass distribution as a property associated with
the ‘thermal elements’. This information could be converted into grid-based information as
needed, in exactly the same way as the combustion heat release is for the computation of
the convective transport.

The inability to resolve small-scale combustion and radiative emission processes in any
detail is not only due to limitations on computer resources. Most of the ‘fuels’ consumed
in fires were never intended as such. Hence, thermophysical and chemical properties of
the kind needed to analyse the combustion of the contents of a room or warehouse, for
example, are simply unavailable. Thus, it makes no sense to attempt to resolve either the
spectral or angular dependence of the thermal radiation in any detail. Instead, a version of
the “P1’ approximation [11] is adapted to the typical fire scenario and a grey-gas model is
employed to describe the absorption.

With the adoption of the P1 approximation, complex geometries can be treated
approximately by regarding physical barriers to the flow as highly absorbing media. While
this may appear at first sight to be a very crude approximation to the interaction of radiation
with a typical surface, it has some important virtues as well. First, as shown below,
it implies boundary conditions very similar to those typically used with the P1 model.
Second, the physical assumptions made are quite plausible; especially when one considers
the soot-coated surfaces present in most fires. Finally, since the radiative transport problem
then becomes the solution to a self-adjoint partial differential equation in a rectangular
domain, efficient solution techniques can be employed. This is a crucial point since typical
applications require million-cell grids with the solution available on each of thousands of
time steps.

A number of approximate techniques are used for the treatment of radiative transport in
other present-day CFD-based fire simulations. These include the six-flux model [5] for two-
dimensional and the discrete transfer method [6] for three-dimensional (but with assumed
centreline symmetry) simulations of grey-gas enclosure fires. For their two-dimensional
flame spread simulations Yan and Homstedt [7] approximate the spectral dependence by
combining a narrow-band model with the discrete transfer method. Another method, used
by Bressloff ef al [8] in their axisymmetric simulation of a turbulent jet diffusion flame,
is to incorporate a weighted sum of grey-gases solution into the discrete transfer method.
The different discrete transfer approaches vary mostly according to the degree to which the
spectral dependence of the radiation is included. Computational cost limits the complexity
of the radiation model in fire simulations. Bedir et al [9] compared approximate solution
techniques for a one-dimensional diffusion flame. In order of decreasing computational cost
they considered narrow-band, wide-band, spectral-line-weighted summation of grey gases
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(both 30 and 3 grey gases), and grey-gas approximations. CPU times, weighted by the
grey-gas computation, were found to be 630, 150, 110 and 9, respectively.

These earlier studies clearly demonstrate that even the crudest approach to including
spectral dependence was nearly an order of magnitude more expensive than the grey-gas
model. Any realistic analysis of the spectral dependence imposes a two order of magnitude
penalty in computational time. Those calculations that included spectral dependence
contained at most 2000 grid cells, two space dimensions, and PMMA as the solid fuel.
All three-dimensional calculations reported to date have used a grey-gas model.

As mentioned above, the LES approach was designed for three-dimensional simulations
of fires with an emphasis on the spatial resolution of the buoyant transport of smoke and
hot gases. This emphasis on spatial resolution is, in fact, the defining feature of the LES
fire simulations relative to the other CFD-based approaches referenced above. For example,
the highest resolved case reported by Lewis e al [6] (three-dimensional enclosure fire with
constant absorption coefficient) used 70000 grid points. Fire simulations with 10° grid
points are routinely performed with the LES approach. It is crucial therefore, to use a
radiation model which does not require a sacrifice in spatial resolution. Thus, the grey-gas
approximation is consistent with the information available for fire scenarios, and is in line
with other state-of-the-art approaches for three-dimensional fire simulation.

The remainder of the paper is organized as follows: the next section introduces the
P1 approximation in the form needed for LES fire simulations. Boundary conditions are
developed using continuity of integrated intensity and radiant energy flux, and compared
with more conventional approaches. Section 3 compares the results of the P1 model with
the exact transport equation for a collection of highly localized energy sources used to
characterize fires. Section 4 presents the analytical solution to the P1 model for a collection
of sources adjacent to a semi-infinite boundary. This illustrates how solid boundaries are
represented, and serves as a testbed for the numerical solution presented in section 5. This
solution uses the LES code to represent the fire and an FFT-based direct solver for the Pl
model. The boundary is not introduced explicitly; only a rapid increase in the absorption
coefficient is needed to obtain results very close to the analytical solutions. Some general
remarks close the paper.

2. The radiative transport model

The starting point for the analysis is the radiative transport equation for a non-scattering
grey gas [10]

oT(r)*
T

Q-VI(r, ) =K(’I’)( - I(r, Q)). ¢}

Here, I(r, ) is the radiant intensity, defined so that /(r, §2)d€2 is the radiant energy at
a point r passing through a unit area per unit time through the element of solid angle dQ2
centred about the direction £2. The grey-gas absorption coefficient is x(r), and the local
temperature is 7(r). The quantity o is the Stefan-Boltzmann constant. Both the spectral
dependence of the radiation and the scattering have been ignored because, in addition to
computational expense, in the emitting regions where they are likely to be important, the
relevant processes cannot be spatially resolved; while in the spatially extended soot clouds,
absorption is the most important mechanism.
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The radiant heat flux vector gq(r) can be defined in terms of the radiant intensity as
follows:

q(r) = /Ql(r, 0) dQ. )

Here, the integral is taken over all 47 sr since the radiation at a point can be coming from
any direction. Similarly, the integrated radiant intensity U () is defined as

Ur) =/1(7‘, 0)dQ. 3)

Note that U(r)/c is the radiant energy density and c is the speed of light. Using this
definition and integrating equation (1) over all  yields the conservation of radiant energy
equation

V.q(r) =«(r)[4oT(r)* - U@®)]. @)

This equation is simply a statement that the net radiant energy flux out of any region
occupied by the gas is the difference between that emitted and that absorbed in the volume
under consideration. This energy exchange between the radiation field and the gas is what
couples the convective transport and radiative transport in the bulk of the gas. The coupling
at gas-surface interfaces will be considered briefly below.

The dependence of each physical quantity on r and £ is shown explicitly since this
constitutes the principal mathematical and computational difficuity associated with radiative
transport. Since the radiant intensity at each instant of time depends on five independent
variables (€2 is a unit vector), the direct solution of equation (1) is prohibitively difficult.
Some drastic approximation is needed; especially when the high-resolution grids needed for
convective transport are considered. There are two basic choices available. First, the spatial
resolution can be reduced to the point where the number of grid points in each direction
is comparable to the number of direction cosines retained for computational purposes.
Alternatively, the high spatial resolution could be retained but an explicit simplifying form
can be chosen for the dependence of the radiant intensity on 2. The latter choice is made
here.

There are two main reasons for this choice. First, since high spatial resolution is needed
for the description of convective transport, it follows that the sources and sinks of radiation
that appear in the radiant energy equation (4) must have a considerably fine structure.
Cutting back on the spatial resolution to accommodate a high angular resolution might well
undermine the description of convective transport. Second, the ‘diffusion approximation’,
in the sense of [10], gives results that are accurate enough for the present application,
especially when the approximations already made in the radiative transport equation (1) are
taken into account.

To proceed, following [10], note that equation (4) gives one relationship between U
and ¢. It arises from the zeroth moment of equation (1) with respect to §2. If a suitable
functional form for I as a function of €2 that preserves the next (vector) moment of this
equation can be found involving only U and g, then a closed system of equations will result.
The existence of such a form is well known; in the present notation it can be written as

1
I(r, ) = H(U(r)+3q-ﬂ). )
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This choice preserves the first four scalar moments of the radiative transport equation, and
closes the system with the relation

VU(r) = =3«(r)q(r). (6)

With this relation for the radiant heat flux vector and equation (4), the conservation equation
for the integrated intensity is

V- b VU@r) = 3k(r) U(r) = =3k(r) 4o T*(r). )
k(r)

Equation (7) is known as the P1 approximation to the radiation transfer equation [11].

2.1. Boundary conditions

The role of condensed phase boundaries using the P1 model will be considered next. The
first step is to derive a suitable set of conditions for the gas phase radiation. There are
two possible approaches worth considering. To discuss these in concrete terms, consider
the scenario illustrated in figure 1. The gaseous medium occupies the upper half-space
y 2 0. The lower half-space contains the condensed phase material at temperature T, with
absorption coefficient ;. Clearly the scale is sufficiently small in macroscopic terms for
the boundary to be regarded as planar and the temperature locally uniform.

Y

gas

Figure 1. Schematic of the interface between gas and condensed phase, the temperature of the
solid T is uniform in the region shown.

In the condensed phase the integrated intensity U; satisfies the equation

1 d2U;

- 4
._gx? 02 +Us =407, . 8)

The solutions bounded as y — —oo for Us and the condensed phase radiant heat flux vector
gs take the form

Us = 4o T: —-a exp(«/gxsy) )
gs = —j—g exp(v/3,). (10)

Eliminating the constant a between equations (9) and (10) yields the following relation:
Us + 3¢ = 40 TE. (11)

Following Zeldovich [10], we require that the integrated intensity and the heat flux
vector are continuous at the interface between the gas and condensed phase. The quantities
Us and ¢ can then be replaced by their gas phase equivalents, Thus, if n denotes a unit
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normal to the surface pointing into the gas, the boundary condition can be written in the
more general form:

Ur)+V3n-q(r) =40T r). (12)

This result should be compared with an alternative boundary condition proposed by
Vincenti and Kruger [13]. They assume that the functional form given by equation (5) is
valid for @ - n < 0, and that for €& - n > 0 the wall emits black body radiation at the
surface temperature 7. The result is the following boundary condition:

U(r)+2n-q(r) =40 T (r). (13)

The only difference is that the factor V3 in the coefficient of the heat flux contribution to the
boundary condition is replaced by 2. There are several reasons to prefer equation (12) to
work with. First, it is just as valid on fundamental physical grounds as equation (13).
Second, it permits absorption in depth in the condensed phase to be considered, a
phenomenon which is important for some materials (see Pagni [14]). Finally, it permits
the introduction of solid obstacles in the interior of the computational domain. These
can be analysed by considering them as highly absorbing materials, so that the radiation
incident on one side does not penetrate to the other. Even if the penetration depth is grossly
exaggerated in the computation, the results in the gas phase will be largely unaffected.
Note that reflection from the boundary is not considered the formulation of the boundary
conditions. While the P1 approximation does not preclude the use of reflecting boundary
conditions (as in, for example, a zero flux condition for a perfectly reflecting boundary) this
issue was not pursued in the analysis to date.

3. Comparison with exact transport equation

We now wish to compare the way in which the P1 model equations (4) and (6) predict the
transport of radiation with corresponding results from the exact transport equation (1) in
simplified situations that are relevant to the typical fire scenario. The simplest of these is
the case of an unbounded domain with a uniform absorption coefficient. The gas is assumed
to depart from a uniform ambient temperature 7, in a large number of finite regions of
arbitrary size or shape. This scenario is an idealized representation of the interior of a heavily
soot laden smoke plume. Ultimately, the assumption that the background temperature and
absorption coefficient are constant will be dropped. However, the idea that the emitting
regions are compact and scattered throughout the fire plume is entirely consistent with the
present authors representation of combustion energy release in large-eddy fire simulations.
The scenario appropriate to the solution is sketched in figure 2.

Since the spatial distribution of radiant energy is determined by the Green function in
the absence of boundaries, the most logical way to assess the accuracy of the P1 model is
to compare the Green function associated with equation (7) with the corresponding result
from equation (1). Since the transport equation is linear, attention is focused on a single
region of finite extent. The radiant intensity / (v, §2) is written in the form:

4
I(r, Q) = ";” + / f;'— (T(ro)* = T2) Ge (r — o, Q) dro (14)
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Figure 2. Schematic showing discrete emitters in fire plume smoke cloud.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)

where Ty, and Io, = 0 T2 /7 are the far field temperature and intensity, respectively. The
exact Green function G.(r — 7y, §2) satisfies the equation

Q:VG.+kGe =8(r — ). (15)

The solution can be readily obtained using Fourier transform techniques. Let x = « (r — 1)
and define the Fourier transform G*(k, ) as follows:

G*(k, Q) = fd:z: exp(—ik - ) Ge(x, ). (16)

Taking the transform of equation (15) yields the solution for G* in the form:

1
*= 2 S ——
Gr=x (1+ik-ﬂ)' an

Now the quantity of physical interest is the radiant heat flux vector associated with the
Green function. Defining q *(k) as its Fourier transform, using equation (2) we have

q*(k)=/G* Qd2. (18)
Since G* depends only upon k - £2, the integration over £ and the absence of any other
vectors leads to the requirement that g* (k) has the form

q* = —ik¢* (k). (19)

Taking the scalar product of equation (19) with & and using equation (17) yields the
following expression for ¢*(k):

. 27k? (1 1+ik
Pt =— - (EIOg[———I—ik]_z)' (20

The Fourier transform can be inverted by noting that since ¢* depends only on k. The
result is

2
o(x) = '}‘Ez(x)- 2n
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Here, Ex(x) denotes the exponential integral function. Finally, taking the gradient of ¢
with respect to x, the desired result is obtained:
x [ exp(—x)
go(@) = K>~ [—5—] :
X x
In order to compare the exact and diffusion model results, equation (14) is integrated

over all 2. Then using equation (22) and assuming that the point 7 is outside the emitting
region:

(22)

R exp(—«R)

©=CF “ip
Here, the vector R is the line from the centroid of the emitting region to the point r, while
Q is the total radiative power emitted from the region:

Q= / 4ko (T(r)* = TL)dr. (24)

We now wish to investigate the way in which the P1 model equations (4) and (6) predict
the transport of radiation in the same scenario. Again, the gas is assumed to depart from
a uniform ambient temperature T, in one or more finite regions of arbitrary size or shape.
Far from any of the regions of elevated temperature, U - U, where Uy, = 4o T:;. Thus,
for this problem the model equations can be written as

U=Ux+V(r), (25)
V2V = 3c?V = 3«40 (T* - T3). (26)

The only boundary condition is that V — 0 at infinity.
The solution can be readily obtained in terms of a Green function G(r — ) that satisfies
the equation

(23)

VG —3k%G = 5(r — 1y). 27

Since neither equation (27) nor the boundary conditions exhibit any preferred direction, the
solution for G must be spherically symmetric in » — rg. It is readily found to be

1
G(r —mry) = —m exp (-—\/EKI’I' — "‘ol)- (28)

Using this result, the solution for the integrated intensity can be written in the form:
U=Uyx+ / k240 (T (ro)* — T) G(r — ro) dr. (29)

Here, the integral is over all space. Now if the temperature rise is restricted to N disjoint
regions of finite extent, then equation (29) can be used to derive the following expression
for the radiation heat flux:

N
q(r) = — Z / dko (T(ry)* = TL)V, (G(r — 1)) dr,. (30)
n=I

There are several points relevant to the fire scenario contained in the solution. First, the
emission and absorption of radiation are treated very differently in the analysis. The emission
is a ‘known’ source term from the perspective of radiative transport. The absorption,”
however, determines the structure of the transport equation. This can be seen by noting that
the solution is linear in « (T* — T%), but the absorption length scale (+v/3x)~! is built into
the Green function in a non-trivial way. This permits the absorption and emission to occur
on very different length scales. Indeed, since the emission is proportional to a high power
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of the temperature, it mostly occurs in or near the highly localized flame sheets where the
combustion takes place. Both gaseous and particulate combustion products contribute to
the emission of radiation [12]. The absorption of radiation by soot, on the other hand, is
relatively insensitive to temperature. Thus, in a heavily soot-laden plume, the entire cloud
of smoke can be an efficient absorber of radiation.

The mathematical and computational consequences that result from this separation of
scales are critical to this analysis. If we assume the average spacing between each of
the emitting regions to be much larger than their spatial extent, then equation (30) can be
simplified to the following form:

YR, Q.

2 T KPR+ V3cRy). 31
n=1 n n

q(r) =—
Here, Q, is the total radiative power emitted from the nth region.

0, = /4/{0 (T —TL) dr,. (32)

The vector R, = r — 1, is the line from the centre of energy emission of the nth region
7., to the point in question.

8 |
6
qe) 4
2
0
0 0.5 1 1.5 2
X

Figure 3. Comparison of radiative flux from point source ¢(x) as a function of radial optical
depth x = x R. Full curve, exact solution; broken curve, P1 approximation.

The solutions given by equations (23) and (31) are plotted in figure 3. Note that the
two results are very close over the region shown, and agree even more closely as R — 0.
Thus, in the bulk of the gas the diffusion model gives excellent results for the scenarios of
interest. This is true even if the absorption coefficient vanishes. In fact, in this limit both
the exact and approximate radiant heat flux fields become identical, and can be obtained
as solutions of the Poisson equation. When kR becomes large, both solutions yield the
‘radiation heat conduction’ approximation.

4. Semi-infinite domain solution

The concepts introduced in the preceding sections can be assembled to develop a formal
solution to the radiative transport problem in a semi-infinite domain. The gas occupies
the half-space y > 0. It consists of a background of weakly absorbing gas with « = ko
interspersed with a number of compact regions emitting with a total radiative power Q,,. The
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centroid of each region is located at 7 = 7,. The boundary is at temperature T = T,,(x, 0, 7).
The geometry is the same as that shown in figure 2 with the y = 0 plane displayed. There
are two objectives of the analysis. First, it shows how a model based on a large number
of subgrid scale interacting emitters embedded in an absorbing background can be used
to represent the radiation from an isolated fire plume. Then, the same result is obtained
numerically to demonstrate that the use of efficient elliptic partial differential equation
solvers combined with the notion of a boundary as a strongly absorbing extension of the
computational domain allows highly resolved radiation fields to be obtained at relatively
modest computational cost. Once again, the starting point is equations (25) and (26). We
now make explicit use of the fact that the length scale (k)" is assumed to be much larger
than any of the emitting regions. Viewed on the large scale, the emitters in the gas phase
are a collection of point sources of strength Q,.
To proceed, the solution on the (ks )~" scale satisfies the equation

N
VIV =32V = <3k 3 Qb (1 — 7). (33)

n=1

The solution for V must vanish far from the boundary, while at y = 0

— =40 (T3 -T2). (34)

The solution can be expressed in terms of a Green function G (7, 7g) that physically
represents the solution corresponding to a point source in the presence of a cold boundary at
temperature Too. It is defined as the solution to the following equation and surface boundary
condition:

ViG - 323G =8(r — 1) (35)
1 3G _ 36

The solution is obtained by considering the integral J () defined over the entire half-space
y=20

J = / {GV?V — VV2G) dr. (37)

Applying the divergence theorem and the requirement that G and V vanish at infinity to
equation (37) yields a second expression for J:

R e G av
J= f / IV (x0, 20, 0) — — G (7, xg, 20, 0) —] dxg dzg. (38)
~00 J—o0 ay() ayo

Next, using equations (33)~(36) in both representations of I and equating them, the followin g
formula for V is obtained:

N
V(r) = =3keo ) 0nG(7, ) + Vi(r) (39)

n=1

Vi(r) = V3o f f G(r, r)do (T — T2) dx, dz,. (40)
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The final step in the solution for V on this scale is the determination of the Green
function. This can be accomplished by introducing an auxiliary function W (r, rg) defined
as follows:

1 3G
W, rg) =G — _ 41)
° V3o, 8y
Substitution of this definition into the suitably differentiated form of equation (35) yields
1 3
VZW—3/<2W=(1————————)6(T—7'). (42)
[es) \/§Koc a)/ 0
The function W is now decomposed into two parts as follows:
1 oW,
W=Ww — = (43)
V3iceo 3y

Then, using the requirement that W, and W, must vanish for large y, they are both solutions
of the equation

(") _a2 (M) =5 44
w,) ¥\ w,) = (r — 7o) (44)

W was constructed to satisfy the boundary condition W = 0 at y = 0. This condition is
enforced by requiring the following boundary conditions on W; and W;:

oW

Wy = —= = 0. (45)

dy
The result of these manipulations is to replace one complex problem for W by two much
simpler ones for W, and W,. The solutions for these quantities can be readily expressed in
terms of the fundamental Green function shown in equation (28). Denoting this quantity as
G in what follows:

Wi=GCGo(r—719) — G (T —17) (46)
Wi =Goo(r —710) + G (7 — 11). 47)

Here, r; is the image point of 1 with respect to the y = O plane, i.e. 71 = (x9, —yo, Z0).
With W known, equation (41) now constitutes an ordinary differential equation for G.
Using equations (43), (46) and (47), G can be written in the form

CG=G(r—10)+GCGx(r—r)+K. (48)
The quantity K is the solution vanishing at infinity to the equation
1 8K
K————=-2G(r — 7). 49
\/:;ICOO ay oo ( l) ( )

Introducing the quantities A = ko ((x —x0) + (z — 20)2)1/2 and Y = ke (¥ + yo), the
solution to equation (49) can be readily shown to take the form

K= \/2571:00 exp (x/iY)El[ﬁ(Y+\/Y2+k2)]. (50)

The Green function is axially symmetric, depending on the three variables A, ko,y and
ke yo. Figure 4 shows the integrated intensity distribution associated with a source located at
ko Yo = 0.3. The inclination of the contours with respect to the vertical at y = O determines
the heat flux g to the surface. The dependence of this quantity on the distance of the source
from the surface is shown in figure 5. The figure shows that as the optical depth ks yo of
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Figure 4. Contour plot of the Green function with a source at x4 yo = 0.3 displayed in units
of 1/kx.
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Figure 5. Heat flux to the surface from a point source for source locations k. yy = 0.1 (top) to
Koo Yo = 0.5 (bottom).

the source relative to the boundary increases, the flux to the surface decreases rapidly. By
the time this quantity reaches a value of one, there is virtually no effect on the surface.

The solution to this radiative transport problem can be regarded as complete once
the boundary temperature 7y, and the strength of the emitters 0, are known. The wall
temperature is determined in practice by an energy balance in the solid which takes into
account heat conduction. The source strength must either be calculated from a local analysis
on the scale of the emitting material or specified as a fraction of the chemical heat release
which drives the fire. Since the small-scale phenomena which control the chemical heat
release are sub-grid scale in the fire simulations for which this model is intended, the details
of the local model are not important in the present context. However, it is very important to
distinguish between radiant energy liberated locally as a result of combustion, and the net
energy escaping to remote portions of the spatial domain of interest. The former quantity
may be regarded as ‘input’ into the radiative transport problem, while the latter must be
part of the solution.
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5. Radiation model in the large-eddy simulation of an isolated fire plume

A typical distribution of thermal elements in a large-eddy simulation (LES) of a square pool
fire is shown in figure 6; L,, L, and L, are the physical dimensions of the domain in the
two horizontal and vertical directions, respectively. The dark coloured points correspond
to thermal elements which locate active combustion and the lighter coloured points are
thermal elements for which combustion has ceased. On the base of the domain the radiative
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ua.x.‘a.t“!)" *u;‘,‘w YR
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Figure 6. Thermal elements from a large-eddy simulation of a square pool fire. Ly and L,
denote the two horizontal dimensions, and L, the vertical. Thermal elements which are dark
correspond to locations of active combustion, lighter shading denotes elements which have
burned out. The radiative flux on the bottom surface is shown by grey-scale contours, lighter
shading corresponds to a larger flux.

(This figure can be viewed in colour in the electronic version of the article; see
http://www.iop.org)
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flux on the solid surface is shown by grey-scale contours (lighter shading corresponds to a
larger flux). Details regarding the formulation of the LES model are given in Baum et al
[2, 4]. To date the LES calculations have assumed that a fixed fraction of the chemical
heat release is lost by radiation to the surroundings which are radiatively non-participating.
Time-averaged LES resulis and experimenial correlations for an isolated fire piume are in
good agreement [2]. Indeed, for problems of practical interest a thermal radiation model
is the most important improvement to the large-eddy simulation’s description of large-scale
thermal transport. To this end, the analytical results of section 4 (i.e. equation (39)) were
used to test the accuracy of the numerical solution of the P1 approximation for the isolated
fire plume case. The solid boundary temperature was assumed to be ambient and the

L
distribution and strengths of the point source emitters were obtained from LES results such

as those shown in figure 6.
Within the context of the large-eddy simulation the net volumetric rate of chemical heat
release, which appears in the energy equation, is [4]

Ge(r, 1) =Y Qclt — i) 8(r — 15(1)). (51)

Here Q. is the prescribed net volumetric chemical heat release rate of a thermal element;
T, (t) is the position of thermal element n and ¢, is the time at which thermal element n
leaves the fuel bed. The value of Q. and its time history are defined such that the fire’s
total heat release rate and the average flame height are consistent with experimental results.
The LES conservation equations for the radiant energy and the integrated intensity are

Veg(r,0) =" 0i(t; ) 8(r — r4(t)) — k(r) V(r) (52)
and "

v. —(1-—)-VV('I') =3k V(r)=-3)" Q:(t,7;n). (53)
Here the net volumetric rate of radiant emission for :Iement nis

0:(t, 73 n) = BQc(t; n) 8(r — T4(1)) (54)

where § is the prescribed fraction of the chemical heat release rate that is emitted radiatively.
Given the spatial distribution of Q. from the LES calculation, equation (53) was solved
with an absorption coefficient which follows a step function in the vertical direction:

- Koo for y>0 s
k(r) =
Kw for y <0, (55)

A control volume numerical solution approach to equation (53) was used with fast Fourier
transforms in the horizontal directions and Gaussian elimination in the vertical direction
(direction of variable absorption). The staggered grid used in the LES hydrodynamic
calculation was also used in the gas phase part of the radiation calculation. Additional
grid points were added to account for absorption in the solid phase. Retaining continuity of
both the integrated intensity and the radiative flux across the gas—solid absorption interface
was handled in a manner analogous to methods for thermal conductivity interfaces [15].
The following figures show results from a LES simulation of a methanol pool fire. The
pool is 30 cm square and the calculational domain comprised of 64 x 64 x 128 cell volumes
representing a physical domain of L, = L, = 1.28 m on the sides and L, =256 m tall,
The gas and solid phase absorptions, k., and «,,, were defined such that L, k., = L Koo =4
and Lyxy, = 1.25 (where L, is the thickness of the solid phase in the radiation calculation).
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Figure 7. Vertical profile of the integrated intensity, V, above the centre of the pool fire. The
intensity from both the numerical (broken curve) and the analytical (full curve) solutions to the
radiation transfer equation are shown. Note that the analytical solution is not defined in the solid

phase, xy < Q.
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Figure 8. Radiation flux (kW m~2) on the bottom surface. The square outline of the pool fire
is also shown. Full curves correspond to the analytical solution and broken to the numerical.

The radiative heat loss fraction was 8 = 0.2. Based on experimentally measured mass
burning rates the prescribed heat release rate of the pool fire was 260 kW m~2. The active
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Figure 9. (a) Line contours of the integrated intensity (kW m™2) on a vertical plane centred
over the pool fire. (b) Grey-scale contours of the net volumetric rate of emission in the gas
phase. Lighter coloured areas correspond to net emission and darker areas to net absorption.

combustion or flame zone was represented by approximately 36 000 of a total of roughly
80000 thermal elements.

The numerical calculations were performed on an IBM/RISC 6000 workstation. The
computational cost of the large-eddy simulation was 20 x 106 CPU s/(cell - timestep);
approximately 8 h of CPU time was required for 10 s of simulated real time.
Obtaining the integrated intensity from the PI1 approximation required 1.3 x 107¢ and
5 x 1072 CPU s/(cell - timestep) with the FFT-based method and the analytical solution
{which used NAG routines to evaluate the exponential integral), respectively. From these
timings it is clear that on the scale of the overall LES calculation the P1 approximation is
computationally very efficient. Including the P1 approximation in the LES calculation did
not require a reduction in the spatial resolution used for the hydrodynamics. Note that this
would not have been the case for more expensive models with angular dependence such as
the discrete ordinates method.

Figure 7 shows a vertical profile of the integrated intensity above the centre of the pool
from both the analytical and numerical solutions of equation (33). The gas—solid interface
is at y = 0; negative values of the horizontal axis correspond to locations within the solid.
The analytical solution (full curve) was determined only for the gas phase. The numerical
solution is in excellent agreement with the analytical solution, This agreement allows one
to calculate the radiation flux on the surface from the value of the integrated intensity by
using equation (34). The radiation flux on the surface is shown in figure 8. Note that the
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absorption coefficient of the pool and its surroundings are identical. Again the numerical
result is in excellent agreement with the analytical values (full curves). The FFT-based
method is clearly an accurate and computationally efficient method for including the P1
approximation in large-eddy simulations of isolated fire plumes with a constant absorption
coefficient.

Figure 9(a) shows line contours of the integrated intensity on a vertical plane over the
centre of the pool fire. In figure 9(b) is a grey-scale contour on the same vertical plane
of the net volumetric rate of emission; light areas correspond to net emission, dark areas
to net absorption. Most emission occurs near the base of the plume. A few areas of high
emission exist downstream and originate from thermal elements that rose relatively quickly
within the hot core of the plume. Both figures show the presence of fine structures at a
resolution which would be prohibitively expensive, computationally, if a radiative transport
model with a similar angular resolution were used.

6. Summary and conclusions

The LES technique for simulating fires developed at NIST is based on the assumption that
both the chemical heat release and radiative emission occur on subgrid scales. The resources
of the computer can then be applied to resolving the buoyancy-generated motion of hot gases
and smoke. With present-day computers 3D LES simulations of fire dynamics in which
radiative heat transfer is not modelled are possible over scale ranges up to approximately two
orders of magnitude. It is highly desirable to incorporate a radiation transport model into the
LES approach which is sufficiently efficient that the resolution of the LES is not degraded.
By averaging over the angular dependence the P1 approximation is such a computationally
efficient radiation model. While other radiation models are available (such as the discrete
ordinate method) they are significantly more computationally expensive to use at the desired
spatial resolution. Thus, the grey-gas P1 approximation to the radiative transport equation
is a suitable radiation model for use in the large-eddy fire simulations.

For the case of a constant absorption coefficient the P1 approximation was found to be
in excellent agreement with the exact solution to the radiative transport equation. While
the P1 approximation is not limited to constant absorption it is an appropriate first step in
the simulation of an isolated fire plume. A fast-Fourier-transform-based numerical solution
and the exact solution to the P1 approximation were also compared. The numerical solution
was found to be accurate and highly efficient, requiring only a fraction of the total LES
computational cost.

For the case of variable absorption coefficients the authors have developed a two-
dimensional multigrid numerical procedure for solving the P1 approximation equation. This
allows both absorption in depth in solids (e.g. enclosure boundaries) and variable absorption
in the gas phase (e.g. soot). This work is currently being extended to three dimensions and
will be presented at a later date.
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